【动画】带你了解,何为网络安全“攻击面管理”******
【2022年国家网络宣传周系列科普】
近年来,新兴技术迅速发展带动了网络资产边界快速拓展,也增加了企业资产暴露面,而基于供应链的新型攻击则大大降低了攻击成本。在多重因素的驱动下,网络安全防御策略也在与时俱进,攻击面管理也开始被行业所关注。让我们一起了解一下攻击面管理的小知识吧。
什么是攻击面?
近日发布的《中国攻击面管理市场研究报告》(以下简称研究报告)指出,攻击面是指未经授权即能访问和利用企业数字资产的所有潜在入口的总和。
其中,包括未经授权的可访问的硬件、软件、云资产和数据资产等,同样也包括人员管理、技术管理、业务流程存在的安全弱点和缺陷等,即存在可能会被攻击者利用并造成损失的潜在风险。
但不是所有资产暴露面都可以成为攻击面,只有可利用暴露面叠加攻击向量才形成了攻击面。
什么是攻击面管理?
攻击面管理是一种从攻击者的角度对企业数字资产攻击面进行检测发现、分析研判、情报预警、响应处置和持续监控的资产安全性管理方法,其最大特性就是以外部攻击者视角来审视企业所有资产可被利用的攻击可能性。
主要包含外部攻击面管理(EASM)、网络资产攻击面管理(CAASM)、数字风险保护服务(DRPS)等内容。
什么是攻击面管理框架体系?
攻击面管理框架体系自下向上分别为基础技术、安全能力和应用场景。基础技术为支撑攻击面管理的技术能力集合,多种技术组合形成攻击面管理的能力体系,根据不同的业务场景需求采用不同的能力组合,形成不同的应用场景下的攻击面管理解决方案,为用户提供有针对性的攻击面闭环管理能力。
什么是攻击面管理成熟度模型?
研究报告中还提到了建立攻击面管理的成熟度模型,主要是工具阶段的被动防御、平台阶段的主动防御、流程化阶段的对抗防御、先知阶段的优先防御四个层级;提出了暴露面获取、脆弱点发现、攻击面挖掘、情报获取能力等攻击面管理要具备的12个能力域,从检测发现、分析研判、情报预警、响应运营的闭环管控过程分解了响应的29个能力子项,从子能力的具备和完善情况来评价攻击面管理的有效性。
发展前景怎么看?
目前,国内外厂商如华云安、360政企安全、Mandiant、CyCoginito、等一大批传统网络安全团队,正在进入攻击面管理创新领域。未来攻击面管理将从传统场景扩展到新兴技术场景,并提供跨领域、跨技术平台的数字资产及其攻击面管理能力,更关注企业内部业务风险和第三方风险的管理,为用户提供统一的攻击面管理入口,并提供一致的安全运营体验。
光明网、华云安 联合出品
监制:张宁、李政葳策划:孔繁鑫制作/配音:雷渺鑫
提速近10倍!基于深度学习的全基因组选择新方法来了******
近日,中国农业科学院作物科学研究所、三亚南繁研究院大数据智能设计育种创新团队联合多家单位提出利用植物海量多组学数据进行全基因组预测的深度学习方法, 可以实现育种大数据的高效整合与利用,将助力深度学习在全基因组选择中的应用,为智能设计育种及平台构建提供有效工具。相关研究成果发表在《分子植物(Molecular Plant)》上。
全基因组选择作为新一代育种技术,通过构建预测模型,根据基因组估计育种值进行早期个体的预测和选择,从而缩短育种世代间隔,加快育种进程,节约成本,推动现代育种向精准化和高效化方向发展。
统计模型作为全基因组选择的核心,极大地影响了全基因组预测的准确度和效率。传统预测方法基于线性回归模型,难以捕捉基因型和表型间的复杂关系。
相较于传统模型,非线性模型(如深度网络神经)具备分析复杂非加性效应的能力,人工智能和深度学习算法为解决大数据分析和高性能并行运算等难题提供了新的契机,深度学习算法的优化将会提高全基因组选择的预测能力。
该研究团队以玉米、小麦和番茄3种作物的4种不同维度的群体数据为测试材料,通过创新深度学习算法框架开发了全基因组选择新方法。
与其他五种主流预测方法相比,该方法有以下优点: 可以利用多组学数据开展全基因组预测;算法设计中包含批归一化层、回调函数和校正线性激活函数等结构,可以有效降低模型错误率,提高运行速度;预测精度稳健,在小型数据集上的表现与目前主流预测模型相当,在大规模数据集上预测优势更加明显;计算时间与传统方法相近,比已有深度学习方法提速近10倍;超参数调整对用户更加友好。
该研究得到了国家重点研发计划、国家自然科学基金、海南崖州湾种子实验室和中国农业科学院科技创新工程等项目的支持。
学术支持
中国农业科学院作物科学研究所
记者
宋雅娟
(文图:赵筱尘 巫邓炎)